# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Shigeru Ohba,<sup>a</sup>\* Keisuke Matsuura,<sup>b</sup> Tamotsu Suzuki<sup>b</sup> and Noritaka Chida<sup>b</sup>

<sup>a</sup>Department of Chemistry, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and <sup>b</sup>Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: ohba@flet.keio.ac.jp

#### **Key indicators**

Single-crystal X-ray study T = 299 KMean  $\sigma$ (C–C) = 0.009 Å R factor = 0.141 wR factor = 0.417 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

### The structure of the title compound, $C_{12}H_{11}ClN_2O_2$ , prepared in a synthetic study on spicamycin derivatives, has been determined. In the crystal structure, the molecules lie on mirror planes and form a herring-bone structure.

2-Chloro-4-(4-methoxybenzyloxy)pyrimidine

Received 12 September 2002 Accepted 1 October 2002 Online 5 October 2002

### Comment

Spicamycin is an antitumor antibiotic consisting of a heptopyranose and an adenine moiety. The title compound, (I), was prepared in a synthetic study on spicamycin derivatives possessing various heterocyclic bases (Suzuki, Suzuki *et al.*, 2002). Coupling of (I) with the heptose moiety of spicamycin, followed by deprotection, gave the spicamycin derivative (5hydroxypyrimidinyl)aminospicamycin (Suzuki, Matuura & Chida, 2002). Since the geometry of the compound could not be fully determined based on the NMR spectra, the X-ray analysis of (I) has been carried out.



The molecule of (I) is perfectly planar, since all the non-H atoms lie on a mirror plane (Fig. 1). The molecules form a herring-bone structure on the mirror planes at  $y = \frac{1}{4}$  and  $\frac{3}{4}$  in the crystal (Fig. 2). The displacement parameters of atom Cl1 show large anisotropy (Fig. 3), suggesting positional disorder or a stacking fault along the *b* axis.

### **Experimental**

Basic hydrolysis of 2,4-dichloropyrimidine (Kazimierczuk *et al.*, 1972), followed by alkylation with 4-methoxybenzyl chloride in aqueous  $NaOH-CH_2Cl_2$ , in the presence of tetrabutylammonium iodide, afforded the title compound, (I). The crystal of (I) obtained from a toluene/methanol solution by slow evaporation did not have any planar faces. A transparent part was cut from the solid for the X-ray measurements. The crystal specimen used became opaque white in air after two weeks.

Mo Ka radiation

#### Crystal data $C_{12}H_{11}CIN_2O_2$ $M_r = 250.68$

| $M_r = 250.68$                      | Cell parameters from 25           |
|-------------------------------------|-----------------------------------|
| Orthorhombic, Pnma                  | reflections                       |
| a = 12.311(2)Å                      | $\theta = 12.0 - 12.5^{\circ}$    |
| b = 6.788 (2)  Å                    | $\mu = 0.31 \text{ mm}^{-1}$      |
| c = 14.222 (2) Å                    | $T = 299 { m K}$                  |
| V = 1188.5 (4) Å <sup>3</sup>       | Prism, colorless                  |
| Z = 4                               | $0.50 \times 0.50 \times 0.50$ mm |
| $D_{\rm r} = 1.401 {\rm Mg m}^{-3}$ |                                   |

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved



#### Figure 1

The molecular structure of (I), with displacement ellipsoids plotted at the 50% probability level.

#### Data collection

| Rigaku AFC-7R diffractometer           | $R_{\rm int} = 0.024$             |
|----------------------------------------|-----------------------------------|
| $\omega$ –2 $\theta$ scans             | $\theta_{\rm max} = 27.5^{\circ}$ |
| Absorption correction: by              | $h = -6 \rightarrow 15$           |
| integration (Coppens et al., 1965)     | $k = -3 \rightarrow 8$            |
| $T_{\min} = 0.861, T_{\max} = 0.875$   | $l = 0 \rightarrow 18$            |
| 1660 measured reflections              | 3 standard reflections            |
| 1477 independent reflections           | every 150 reflections             |
| 1017 reflections with $I > 2\sigma(I)$ | intensity decay: 3.9%             |
| Refinement                             |                                   |

#### Refinement on $F^2$ H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.141$ $w = 1/[\sigma^2(F_o^2) + (0.2P)^2]$ $wR(F^2) = 0.417$ S = 1.79 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ 1477 reflections $\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$ 103 parameters

#### Table 1

Selected geometric parameters (Å).

| Cl1-C6 | 1.751 (6) | N5-C7 | 1.336 (8) |
|--------|-----------|-------|-----------|
| N4-C6  | 1.330 (7) | C7-C8 | 1.381 (8) |
| N4-C9  | 1.310 (6) | C8-C9 | 1.370 (8) |
| N5-C6  | 1.296 (8) |       |           |

where  $P = (F_o^2 + 2F_c^2)/3$ 

X-ray intensity data were measured for +h,+k,+l ( $\theta < 27.5^{\circ}$ ) and for  $-h,\pm k,+l$  ( $\theta < 11^{\circ}$ ). During the data collection (over 20 h), the standard reflections showed a decay of 3.9%, for which a correction was applied. The possible space groups suggested by the systematic absences were *Pnma* and  $Pn2_1a$  (a non-standard setting of  $Pna2_1$ ). Some direct-methods calculations assuming space group  $Pn2_1$  a indicated a flat molecular structure; a similar result was obtained for Pnma. The C and N atoms of the pyrimidine ring were assigned based on their atomic displacement parameters, and the H atoms bonded to C atoms were confirmed from difference syntheses. All H atoms were positioned geometrically and fixed with  $U_{iso}(H) = 1.2U_{eq}(parent$ atom). The R(F) and  $wR(F^2)$  values are relatively high, which may be due to the positional disorder of the Cl atom. In fact, the displacement parameters of the Cl atom are strongly anisotropic, and  $U_{22}/U_{11}$ and  $U_{22}/U_{33}$  are 3.5 and 5.3, respectively. However, tentative refinement with the Cl atom shifted from the mirror plane did not improve the R values.



Figure 2 The molecular arrangement of (I) on a mirror plane at  $y = \frac{1}{4}$ .



#### Figure 3

Another view of the molecular structure of (I), showing the large anisotropy in the displacement parameters of the Cl atom.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

### References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kazimierczuk, Z., Lipski, M. & Shugar, D. (1972). Acta Biochim. Pol. 19, 359-366
- Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Suzuki, T., Matuura, K. & Chida, N. (2002). In preparation.
- Suzuki, T., Suzuki, T. S., Yamada, I., Koashi, Y., Yamada, K. & Chida, N. (2002). J. Org. Chem. 67, 2874-2880.